UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0620	33

1	(a) (i)	Cs / Fr	[1]
	(ii)	Br	[1]
	(iii)	U / Pu / Th	[1]
	(iv)	I or At	[1]
	(v)	As	[1]
	(vi)	He / Ne / Ar / Kr / Xe	[1]
	(b) (i)	GeO ₂ / GeO	[1]
	(ii)	TeBr ₂ / TeBr ₄	[1]
	(c) (i)	Sr ²⁺	[1]
	(ii)	F ⁻	[1]
2	(a) (i)	molecule / unit / simple compound / building block and used to make a polymer / big molecule / long chain / macromolecule	[1]
		formation of a polymer / big molecule / long chain / macromolecule ${\bf or}$ joining of monomers ${\bf and}$ elimination / removal / formation of a simple or small molecule / H_2O / $HC1$ ${\bf note}$: two points needed for 1 mark in both parts	[1]
	(ii)	-O- linkage three correct monomer units continuation	[1] [1] [1]
	(b) (i)	catalyst and from living organism accept: biological catalyst / protein catalyst	[1]
	(ii)	enzyme denatured / destroyed	[1]
	(iii)	chromatography locating agent / description of locating agent measure $R_{\rm f}$ / compare with standards	[1] [1] [1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
	IGCSF – October/November 2011	0620	33	

3	(a)	soc	lium hydroxide solution	[1] [1]
		blu	ly) ammonium phosphate gives off ammonia / gas (which will turn red litmus paper e)	[1]
		dis Ca or:	lium hydroxide solution solve fertiliser in water ²⁺ gives (white) ppt	[1] [1] [1]
		Ca	ne test ²⁺ brick red / orange / orange-red ₄ ⁺ no colour	[1] [1] [1]
	(b)	pre ten N ₂	n catalyst ssure 150–300 atmospheres sperature 370–470 °C + 3H ₂ = 2NH ₃ te: units required for temperature and pressure	[1] [1] [1] [1]
	(c)	pot	assium / K	[1]
	(d)	(i)	needs to be soluble / in solution (to be absorbed by plants)	[1]
		(ii)	base proton acceptor	[1] [1]
	(e)	pla	nt growth depends on soil acidity or pH / plants have optimum pH (for growth)	[1]
		ado	d Ca(OH) ₂ / CaO / CaCO ₃ / lime / slaked lime / quicklime / limestone	[1]
4	(a)	(i)	alloy / mixture iron and carbon / another metal or element etc.	[1] [1]
		(ii)	electron loss	[1]
	(b)		ctrons move from / lost from Mg steel / iron	[1] [1]
	(c)	(i)	$2H^+ + 2e \rightarrow H_2$ not balanced = 1	[2]

	Page 4				Syllabus	Paper	
				IGCSE – October/November 2011	0620	33	
				ificial protection – is a <u>cell</u> odic protection – is electrolysis NOT electrical cell		[1] [1]	
			sacr cath	ificial protection – electrons from more reactive meta odic protection – electrons from battery etc.	al	[1] [1]	
		or: sacrificial protection – does not need or use power / battery / electricity / electrical cell					
			cath	odic protection – does		[1]	
				ificial protection uses up / needs a sacrificial / more odic protection doesn't	reactive metal	[1] [1]	
5	(a)	_		/ / sun / sunlight / solar energy nitiates / speeds up		[1] [1]	
	(b)	(i)	0.03	% – 1(%) carbon dioxide		[1]	
				ept: less than 1(%) 5 – 21(%) oxygen		[1]	
		(ii)	remo	ove carbon dioxide from atmosphere		[1]	
		` '	-	luce oxygen two from:		[1]	
			phot	osynthesis rophyll / chloroplast			
			light	/ sun / sunlight / UV / photochemical led carbohydrates / glucose / sugar(s)		[2]	
			101111	ied carbonydrates / glucose / sugar(s)		[2]	
	(c)			is photochemical / needs light		[1]	
		(on	forma	uses formation of silver / silver ions reduced ation of silver) goes black		[1] [1]	
		no	lignt s	still silver(I) bromide / stays white / no reaction		[1]	
6	(a)			e from:			
		bar	ium re	nore reactive / forms ions more readily eacts with (cold) water, nickel does not			
		nicl	kel co	nore vigorous with acids mpounds coloured, barium compounds white			
		nicl	kel / n	is more than one oxidation state, barium has one iickel compounds catalysts, barium / barium compou	unds not catalysts		
		nicl	kel for	rms complex ions, barium does not		[3]	
	(b)	(i)	high	ard reaction favoured by low temperatures / rev temperatures / heat hermic	erse reaction fav	oured by [1] [1]	
		(ii)	•	lucts / RHS		[1]	
				fewer moles / molecules / smaller volume / ORA		[1]	
		(iii)	do n	ot react or left behind / left at 60°C		[1]	

Page 5				Syllabus	Paper
			IGCSE – October/November 2011	0620	33
	(iv)	(iv) electrolysis cathode (pure) nickel anode impure nickel electrolyte is a soluble nickel salt			
7	i.e. C ₉ ⊦	126/1 1 ₁₈	nethod shown 14 (= 9) or 14x = 126 or x = 9 or (12 × 9) + 18 = 126 rrect formula only = 1	3	[1] [1]
	(b) (i)	C—(ydrogen atoms 1bp C bond atoms 1bp C 2 bp		[1] [1] [1]
	(ii)		ect repeat unit inuation		[1] [1]
	(iii)	H-H bond 2C-H –130 or:	ds broken $+436 \text{ (kJ/mol)}$ C=C $+610 = +1046 \text{ (kJ/mol)}$ ds formed $-415 \times 2 \text{ kJ/mol}$ C-C $-346 = -1176 \text{ (kJ/mol)}$ D kJ/mol / more energy released than absorbed		[1] [1] [1]
		3882 bond 4012 –130 allo v	ds broken 2 (kJ/mol) ds formed 2 (kJ/mol) 0 kJ/mol) 0 kJ/mol / more energy released than absorbed w: ecf for final mark as long as the answer is not pose; units not necessary	sitive	[1] [1] [1]
	(c) (i)	buta	n-1-ol or butan-2-ol or butanol		[1]
	(ii)		-CH ₂ -CH(Br)-CH ₂ Br ₈ Br ₂ = 1 e: any other dibromobutane = 0		[2]
	(iii)	HI			[1]